The effects of genomic inbreeding on production, reproduction, and conformation traits in US Holstein cows

DW Bjelland¹, KA Weigel¹, JD Nkrumah², N Vukasinovic²

¹University of Wisconsin-Madison, Madison, WI ²Pfizer Animal Genetics, Kalamazoo, MI

Outline

- Data Background
- Genomic Inbreeding
 - Genomic Relationship Matrix (F_{GRM})
 - Percent Homozygosity
 - Runs of Homozygosity (F_{ROH})
- Conclusions

EDUCATION AND DISCOVERY

Data Background

- 5,676 animals with genotypes
- 2,913 cows with single lactation records from 9 herds throughout the US
- 33,025 SNPs remaining after removing SNPs for call rate, MAF, and HWE
- Traits analyzed
 - Total milk yield, fat percentage, protein percentage
 - Days open
 - Stature, strength, udder depth, front teat placement
- Linear regression with effects of
 - Herd-Year-Season
 - Parity (1-4)
 - DIM for type traits

Inbreeding from Genomic Relationship Matrix

 Method utilized by USDA-AIPL to report genomic inbreeding

$$\boldsymbol{G} = \frac{\mathbf{Z}\mathbf{Z}'}{\sum 2\mathbf{p}(1-\mathbf{p})}$$

- Z contains values of 0 2p for homozygotes, 1 2p for heterozygotes, and 2 – 2p for opposite homozygotes
- p = 0.5

•VanRaden et al. 2011. Genomic inbreeding and relationships among Holsteins, Jerseys, and Brown Swiss. J. Dairy Sci. 94:5673-5682.

Distribution of FGRM

Table 1. Effect of ${\rm F}_{\rm GRM}$ on economically important traits in dairy $\rm cows^1$

			Δ/1%		
			increase in		
Trait	Mean	SD	inbreeding	SE	Р
205-day milk yield, kg	8,473	1,586	-23	4	0.0001
Average fat, %	3.63	0.59	0.003	0.002	0.08
Average protein, %	3.01	0.24	0.002	0.001	0.03
Days open, d	123	60	0.20	0.22	0.36
Stature	31.7	8.7	-0.09	0.02	0.0002
Strength	29.0	8.8	-0.08	0.02	0.004
Udder depth	22.4	11.1	0.03	0.03	0.29
Front teat placement	29.3	9.9	0.001	0.03	0.97

Percent Homozygosity

Calculated as the percentage of SNPs which were homozygous

$$PH = \frac{N_{AA} + N_{BB}}{N_{AA} + N_{AB} + N_{BB}}$$

Distribution of Percent Homozygosity

Percent Homozygotic

Table 2. Effect of percent homozygosity on economically important traits in US Holstein dairy cows¹

			Δ / 1% increase in		
Trait	Mean	SD	inbreeding	SE	Р
205-day milk yield, kg	8,473	1,586	-53	19	0.005
Average fat, %	3.63	0.59	-0.003	0.008	0.73
Average protein, %	3.01	0.24	-0.0024	0.0036	0.51
Days open, d	123	60	1.76	1.00	0.08
Stature	31.7	8.7	-0.06	0.12	0.60
Strength	29.0	8.8	-0.40	0.11	0.0005
Udder depth	22.4	11.1	0.11	0.13	0.37
Front teat placement	29.3	9.9	0.35	0.15	0.02

¹ N = 2,913

Runs of Homozygosity

- Inbred animals should have stretches homozygous DNA
- Length of runs depends on how recent inbreeding occurs
- Percentage of genome in a ROH
- Studied in humans for past decade
 - Record population history
 - Kirin, M, et al. 2010. Genomic runs of homozygosity record population history and consanguinity. PloS ONE 5:e13996.
 - Effects of inbreeding on disease risk
 - Simon-Sanchez, J, et al. 2012. Cooperative genome-wide analysis shows increased homozygosity in early onset Parkinson's Disease. Plos ONE. 7(3):e28787.

What is a ROH?

ΑΑΑΒΑΕ	В В А В А В А В А А А А А А А А В	15 SNP ROH
AAABBBE	8 8 A 8 A 8 A 8 A 8 A A A 8 8 8 8 8 8 8	
ВААВААА	A B B B A B B A B A B A A B B B A	
ВВВВАА	A	21 SNP RUH
BBBAAAA	4 A B A B A A B A A B A A A A B B A	
ВАВАВАА	A B B A B A B A B A B A B A B A A B A A B A A B A A B A B A B A B A B A B A B A B A B A B A B A B A A B A B A B	NO KUH
		2 10 SNP ROH
ΑΒΒΑΑΑΙ	В В А А В В А А В В В А А А А В В В	

ROH Discovery

- ROHs were discovered using PLINK
- Methods were based on Howrigan et al.
 - LD pruning was performed on the data set with
 7,993 SNPs remaining
 - Minimum length of ROHs 30 SNPs, corresponding to inbreeding in about the last 10 generations
 - No heterozygote and 1 missing SNP were allowed in each 30 SNP section

•Purcell et al. 2007. **PLINK: a tool set for whole-genome association and population-based linkage analysis**. Am J Hum Genet. 81(3):559-575.

•Howrigan et al. 2011. Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms. BMC Genomics. 12:460.

Determining F_{ROH}

 F_{ROH} = Percent of the genome contained within ROHs (Percent Identical by Decent)

$$F_{ROH} = \frac{\sum_{k} length(ROH_{k})}{L}$$

- k = number of ROHs for individual
- L = total length of genome (kb)

Distribution of FROH

14

Table 3. Effect of F_{ROH} on economically important traits in US Holstein dairy cows¹

			Δ/1%		
			increase in		
Trait	Mean	SD	inbreeding	SE	Р
205-day milk yield, kg	8,473	1,586	-21	10	0.05
Average fat, %	3.63	0.59	-0.001	0.005	0.88
Average protein, %	3.01	0.24	0.0010	0.0020	0.61
Days open, d	123	60	1.72	0.54	0.002
Stature	31.7	8.7	0.07	0.06	0.27
Strength	29.0	8.8	-0.11	0.06	0.08
Udder depth	22.4	11.1	0.14	0.07	0.04
Front teat placement	29.3	9.9	0.25	0.08	0.003

Conclusions

- All three measures of genomic inbreeding show effects on economically import dairy traits
- Effects on several traits are index specific
 - Days open significant for percent homozygosity and F_{ROH}
 - Fat and protein percentage significant for $\mathrm{F}_{\mathrm{GRM}}$
- Results consistent with pedigree inbreeding